The Very Long Baseline Neutrino Oscillations Experiment

Presented to FCP05 Neutrino Session

by
Tom Kirk
Brookhaven National Laboratory

Nashville, TN May 23, 2005

Physics Case for the VLBNO Experiment

- All parameters of neutrino oscillations can be measured in <u>one</u> experiment
 - every one of the oscillation parameters is important to particle physics
 - the oscillation parameters contribute to important cosmology questions
 - a $n_{\rm e}$ appearance experiment is needed to determine all these parameters
 - a **broadband** Super Neutrino Beam at very long distances is key to success
 - the Very Long Baseline Neutrino Oscillation (VLBNO) Exp. is the best method
- The massive VLBNO detector empowers <u>additional forefront physics</u>
 - a powerful next-generation *Nucleon Decay* search
 - supernova and relic neutrino searches

Office of

- a deep underground detector in the prospective NSF DUSEL is ideal for VLBNO
- The CP-violation parameter d_{CP} is the most difficult parameter to determine
 - matter effects interact with CP-violation effects
 - the CP-violation phase d_{CP} has distinct effects over the *full 360° range*
 - antineutrino running gives a complementary way to demonstrate CP-violation
- The off-axis beam method requires multiple distances and detectors
 - all experiments will require of order 10 Snomass years of running
 - multiple detectors/beams will require careful control of systematic errors

Questions About the VLBNO Experiment

Won't HyperK + 4MW J-PARC beam complete all the measurements?

- no, the 295km T2K baseline is too short for the solar term and matter effects
- the off-axis T2K neutrino beam requires at least one other big experiment to determine $d_{\mbox{\footnotesize{CP}}}$ without ambiguities; systematic errors are a concern

Isn't VLBNO much more expensive than other approaches?

- the VLBNO cost is comparable to or lower than other less complete methods
- the VLBNO detector can be made in ~100kTonne steps, phased over time
- VLBNO plans to share the large Nucleon Decay Detector in NSF's DUSEL

What about the background from p^0 inelastic events in VLBNO?

- sophisticated Monte Carlo simulations with state-of-the-art SuperK pattern recognition and maximum likelihood methods have mitigated this issue

Why not determine CP-violation with antineutrino running?

- antineutrino measurements will require of order 10 Snomass years of running
- each proposed detector needs to achieve good statistics for most parameters

Isn't the AGS at BNL needed for RHIC and RSVP?

- RHIC runs very compatibly with AGS and RSVP doesn't use all the available time (RSVP is planned for 25 weeks/yr for 5 years
- the neutrino oscillation/nucleon decay experiment could be active for decades

Electron Neutrino Appearance by Oscillation in Vacuum

The equation for oscillation^a of $n_m \otimes n_e$ neutrinos in vacuum is given by:

$$\begin{split} \mathsf{P}(\mathsf{n_m} \ \mathbb{R} \ \mathsf{n_e} \) &= \mathsf{sin^2}(\mathsf{q_{23}}) \ \mathsf{sin^2}(\mathsf{2q_{13}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \\ &+ \frac{1}{2} \ \mathsf{sin}(\mathsf{2q_{12}}) \ \mathsf{sin}(\mathsf{2q_{13}}) \ \mathsf{sin}(\mathsf{2q_{23}}) \ \mathsf{cos}(\mathsf{q_{13}}) \ \mathsf{x} \\ &+ \mathsf{sin}(\mathsf{Dm^2_{21}} \ \mathsf{L}/\mathsf{2E_n}) \ \mathsf{x} \ [\ \mathsf{sin}(\mathsf{d_{CP}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \\ &+ \mathsf{cos}(\mathsf{d_{CP}}) \ \mathsf{sin}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \ \mathsf{cos}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \] \\ &+ \mathsf{sin^2}(\mathsf{2q_{12}}) \ \mathsf{cos^2}(\mathsf{q_{13}}) \ \mathsf{cos^2}(\mathsf{q_{23}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{21}} \ \mathsf{L}/\mathsf{4E_n}) \\ &+ \mathsf{matter} \ \mathsf{effects} \ + \ \mathsf{smaller} \ \mathsf{terms} \end{split}$$

$$Dm_{31}^2 \equiv m_3^2 - m_1^2 = Dm_{32}^2 + Dm_{21}^2 \sim Dm_{32}^2$$

What do we learn by contemplating this long algebraic expression?

- simple inspection won't reveal all the experimental implications
- detailed calculations will clarify all the important experimental issues
- key <u>oscillation parameters</u> still to be measured are shown in red
- the VLBNO method exploits the known oscillation distance scales in green

^aW. Marciano, Nuclear Physics B (Proc. Suppl.) 138, (2005) 370-375

Electron Neutrino Appearance by Oscillation in Vacuum

Electron Neutrino Appearance With Matter Effects

The oscillation for $n_m \otimes n_e$, including the *matter effect*, is given approximately by a:

```
\begin{split} \mathsf{P}(n_{_{I\!I}} \, \& n_{_{I\!I}}) \, \& \, \sin^2(q_{23}) \, \sin^2(2q_{13}) \, \sin^2((A-1)D)/(A-1)^2 \\ & + a \, \& \, J_{CP} \, \sin(D) \, \sin(AD) \, \sin((1-A)D) \, / \, (A \, (1-A)) \\ & + a \, \& \, J_{CP} \, \cos(D) \, \sin(AD) \, \sin((1-A)D) \, / \, (A \, (1-A)) \\ & + a^2 \, \cos^2(q_{23}) \, \sin^2(2q_{12}) \, \sin^2(AD) \, / \, A^2 \\ \\ J_{CP} = \, \sin(d_{CP}) \, \cos(q_{13}) \, \sin(2q_{12}) \, \sin(2q_{13}) \, \sin(2q_{13}) \, / \, \& \\ I_{CP} = \, \cos(d_{CP}) \, \cos(q_{13}) \, \sin(2q_{12}) \, \sin(2q_{13}) \, \sin(2q_{13}) \, / \, \& \\ a = \, \mathsf{Dm^2}_{21} \, / \, \mathsf{Dm^2}_{31} \, ; \, \, D = \, \mathsf{Dm^2}_{31} \, \mathsf{L} / 4\mathsf{E}_n \, ; \, \, A = \, 2\mathsf{VE}_n \, / \, \mathsf{Dm^2}_{31} \, ; \, \, \mathsf{Dm^2}_{31} \equiv \, \mathsf{m^2}_3 \, \mathsf{-m^2}_1 \\ \mathsf{V} = \, \ddot{\mathsf{O}} 2\mathsf{G}_{\mathsf{F}}\mathsf{n}_{\mathsf{e}} \, ; \, \, \mathsf{n}_{\mathsf{e}} \, \mathsf{is} \, \mathsf{density} \, \mathsf{of} \, \mathsf{electrons} \, \mathsf{along} \, \mathsf{the} \, \mathsf{path} \end{split}
```

This expression separates terms by the the following:

- the first term shows the effect of sin²(2q₁₃)
- the second and third terms show the effects of CP symmetry
- the J_{CP} term changes sign when calculating anti-neutrinos, n_m $^{\circ}$ n_e
- matter effects come into all terms via the 'A' factors in blue

^a Barger et al., Phys. Rev. D63: 113011 (2001); Huber et al., Nucl. Phys. B645, 3 (2002); M. Freund, Phys. Rev. D64: 053003 (2001); Barger et al. Phys. Rev. D65: 073023 (2002)

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

BNL ® Rocky Mountains Super Neutrino Beam

Very Long Baseline Neutrino Experiment

- neutrino oscillations result from the factor sin²(Dm₃₂² L / 4E) modulating the n flux for each flavor (here n_m disappearance)
- the oscillation period is directly proportional to distance and inversely proportional to energy
- with a very long baseline actual oscillations are seen in the data as a function of energy
- the multiple-node structure of the very long baseline allows the Dm₃₂² to be precisely measured by a wavelength rather than an amplitude (reducing systematic errors)

1-2 MW Super Neutrino Beam at AGS

 BNL completed October 8, 2004, a Conceptual Design to support a new proposal to DOE to upgrade the AGS to 1-2 MW target power and construct the wide-band Super Neutrino Beam as listed in the DOE's "Facilities for the Future of Science" plan of November 2003

3-D Super Neutrino Beam Perspective

Chiaki Yanagisawa – SBU February 28, 2005

Effect of cut on Δ likelihood

No Δlikelihood cut (100% signal retained)

Signal/Background

 v_e^{\downarrow} CC for signal; all $v_{\mu,\tau,e}$ NC, v_e beam for background

Δlikelihood cut (~50% signal retained)

Maximum Likelihood Method

S/B

Effect of cut on likelihood

 ν_e CC for signal ; all $\nu_{\mu,\tau,e}$ NC , ν_e beam for backgrounds CP-45°

Chiaki Yanagisawa – SBU February 28, 2005

Effect of cut on likelihood

 ν_e CC for signal ; all $\nu_{\mu,\tau,e}$ NC , ν_e beam for backgrounds pp-135°

Chiaki Yanagisawa – SBU February 28, 2005

Comparison of Future Neutrino Oscillations Exps.

<u>Parameter</u>	T2K	T2K2	Reactor	No na	Nona2	VLBNO.
Dm ₃₂ ²	± 4 %	± 4 %	-	± 2 %	± 2 %	±1%
sin²(2q ₂₃)	±1.5%	± 0.4 %	_	± 0.4 %	+ 0.2 %	± 0.5 %
sin²(2q ₁₃) ^a	>0.02	>0.01	>0.01	>0.01	>0.01	>0.01
Dm ₂₁ ² sin(2q ₁₂) b	-	-	-	-	-	12 %
sign of (Dm_{32}^{2}) c	-	-	Doth voculto v	possible	yes	yes
measure d_{CP}^{-d}	- (~20°	<u>Both</u> results ne resolve ambig		~20°	±13°
N-decay gain	x1 <	x20	_	_	-	8 x
Detector (Ktons)	50	1000	20	30	30+50	400
Beam Power (MW)	0.74	4.0	14000	0.4	2.0	1.5
Baseline (km)	295 e	295 e	1	810 ^e	810 ^e	>2500
Detector Cost (\$M)	exists	~1000	~20	165	+200	400
Beam Cost (\$M)	exists	500	exists	50	1000	400
Ops. Cost (\$M/10 yrs)	500	700	50	500	600	150/500 f

^a detection of $n_m \otimes n_e$, upper limit on or determination of $\sin^2(2q_{13})$

^e beam is 'off-axis' from 0-degree target direction; ^f with/without RHIC operations

Best Bets

^b detection of $n_m \otimes n_e$ appearance, even if $\sin^2(2q_{13}) = 0$; determine q_{23} angle ambiguity

 $^{^{\}text{c}}$ detection of the matter enhancement effect over the entire \mathbf{d}_{CP} angle range

 $^{^{\}rm d}$ measure the CP-violation phase $\rm d_{\rm CP}$ in the lepton sector; Nona2 depends on T2K2

Conclusions

- Neutrino Oscillations parameters can be completely determined within the next two decades
- The most effective method is the VLBNO + Wideband Super Beam
- A Megaton-class Water Cerenkov Detector can do this experiment
- The AGS-based Super Neutrino Beam is the best neutrino source
- Combining VLBNO with the Nucleon Decay search in the NSF DUSEL is the most science and cost effective plan for the U.S.

Electron Neutrino Appearance by Oscillation in Vacuum

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

Electron Neutrino Appearance by Oscillation in Vacuum

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

